

1-1 案例簡介與應用

1-2 所需材料

1-1 案例簡介與應用

本案例適用於工業4.0,監控生產參數,可應對各種加工機台,或是依照個人需求 安裝需要的感測器,彙整出加工資訊,並傳至雲端平台,可以實現遠端監控加工狀態, 若不符合預期參數,會發出警示予以提醒

另外可以將讀出數據,使用類神經網路訓練成有效的預測模型,將訓練參數輸入至 mcu中,就可以即時利用感測器收到的數據,預測出平面粗度,並把結果傳至雲端,可 應用於工業之機械加工,當作自動化加工的參考依據

1-2 所需材料

1.DSI2599 x 1

- 2. 強力磁鐵 x 1
- 3.MPU6050 x 1
- 4.FC03 x 1
- 5.排線 x 少許

1-1 接線介紹

1-2-1 腳位介紹-GPIO 1-2-2 腳位介紹-I2C

1-3-1 感應器介紹-MPU6050 1-3-2 感應器介紹-FC03

本次使用兩個電源輸出,一個GPIO,以及一組I2C

2-2-1 腳位介紹-GPIO-

Board	Board Pin Name	CPU Pin Name
NuMaker-PFM-M487	D0	B2
NuMaker-IOT-M487	D1	B3
	D2	C9
	D3	C10
	D4	C11
	D5	C12
	D6	E4

D7	E5
D8	A5
D9	A4
D10	A3
D11	A0
D12	A1
D13	A2

GPIO為較基本的功能·M487提供14個GPIO·但是本次案例會使用I2C·必須預留腳位·本示範案例需要預留D10跟D13

2-2-1 腳位介紹-GPIO

```
1. from pyb import Pin
2.
3. p_d0 = Pin(Pin.board.D0, Pin.OUT)
                                     # create output pin on GPIO B2
                                   # set pin to on/high
p_d0.value(1)
5.
6. p_d1 = Pin(Pin.board.D1, Pin.IN) # create input pin on GPIO B3
7. print(p_d1.value())
                                      # get value, 0 or 1
8.
9. Pin.board.D2.af_list()
                                      # list available alternate functions on GPIO C9
10.
11. def sw2_callback(pin):
                                      # define sw2 (switch button 2) callback
12. print(pin)
13.
14. sw2 = Pin.board.SW2
15. sw2.irq(handler=sw2_callback, trigger=Pin.IRQ_RISING) # configure sw2 to interrupt
```

GPIO語法介紹,使用以上語法可呼叫GPIO功能

2-2-2 腳位介紹-I2C-

Board	I2C Pin Name	Board Pin Name	CPU Pin Name
NuMaker-PFM-M487 NuMaker-IOT-M487	I2C0_SCL	D8	A5
	I2C0_SDA	D9	A4
	I2C1_SCL	D10	A3
	I2C1_SDA	D13	A2

根據nuvoTon提供的User Manual · 可以得知I2C的Pin位置 · M487提供兩組I2C · 使用的時候需要呼叫函式庫 · 這次示範案例使用的腳位是D10跟D13

2-2-2 腳位介紹-I2C-

1. from pyb import I2C 2. 3. i2c = I2C(1, I2C.MASTER) # create and initiate I2C1 as a master 4. i2c.scan() # scan for slaves on the bus, returning a list of valid addresses. Only valid when in master mode. 5. i2c.is_ready(0x42) # check if slave 0x42 is ready 6. i2c.send('123', 0x42) # send 3 bytes to slave with address 0x42 data = bytearray(3) # create a buffer i2c.recv(data) # receive 3 bytes, writing them into data 9. i2c.deinit() # turn off the peripheral

I2C語法介紹,使用以上語法可呼叫I2C功能

2-3-1 感應器介紹-MPU-6050 —

工作資訊:

供電電源:3.3V~5V(內部低壓差穩壓) 資料讀取:I2C(16位元資料輸出) 陀螺儀範圍:±250/500/1000/2000°/s 加速度範圍:±2/±4/±8/±16g 引腳間距2.54mm

2-3-2 感應器介紹-FC03 -

工作原理:

霍爾效應指當電流通過固體導體(或半導體)且放在 磁場內,導體內的電荷載子受到勞倫茲力而偏向一邊, 進而產生電壓(霍爾電壓)。根據此效應,便可偵測 磁場、磁鐵,利用磁鐵置於旋轉物體,根據感應到的 次數來計算RPM

工作資訊:

供電電源:3.3V~5V(內部低壓差穩壓) 資料讀取:GPIO

2-3-2 感應器介紹-FC03 -

感應到磁鐵後,上面的綠色LED燈會亮起

2-1-1程式介紹-MPU6050.py 2-1-2 程式介紹-main.py

3-1-1 程式介紹-main.py-

import pyb import network import usocket as socket from pyb import I2C from MPU6050 import MPU6050

SSID = "夢繪" PASS = "yumee0525" HOST = "ideaschain.com.tw" API_URL = "iiot.ideaschain.com.tw" DEVICE_KEY = "0DezkympiDB6pgfSzNsY"

這邊設定要載入I2C的函式庫,這樣GPIO才會轉換成I2C,以及載入為MPU6050 編輯的函式庫,接下來要設定上傳IDEAS Chain平台的網址跟DEVICE_KEY,平 台上稱為存取權杖

3-1-1 程式介紹-main.py ————————————————————————————————————	
<pre>def wifi(): try: print("connecting to wifi") wlan = network.WLAN() wlan.connect(SSID, PASS)</pre>	
<pre>except: print("Wifi module initial error, reconnecting") pyb.delay(1000) wifi()</pre>	

這邊的功能是如果成功連上Wi-Fi,就會顯示" connecting to wifi" 並進行後續的步驟,若是無法連上Wi-Fi,1秒後重新連接,這邊要注意的是,若是無法連接Wi-Fi,就不會進行後續的動作,會一直重複連接Wi-Fi

*3-1-1*程式介紹-main.py-

```
wifi()
print("Wi-Fi connect")
addr = socket.getaddrinfo(HOST, 80)[0][-1] # 取得連線到伺服器的相關訊息
print(addr) # 顯示取得的address訊息內容
i2c = I2C(1, I2C.MASTER) # 選用I2C1
mpu = MPU6050(i2c)
def get_data():
    data = {"GX":mpu.read_Gyro_x(),"GY":mpu.read_Gyro_y(),"GZ":mpu.read_Gyro_z()}
    json_temp = ','.join(["\"%s\":\"%d\"" % (key,value) for key, value in data.items()])
    return '{'+json_temp+'}'
```

M487有兩組I2C,分別為I2C0與I2C1,這邊使用I2C1,詳細的介紹1-1腳位介紹 有提到,後面就是列出GX、GY、GZ的值

3-1-2<程式介紹-MPU6050.py</td> from pyb import I2C MPU_ADDR=0X68 WH0_AM_I_VAL = MPU_ADDR MPU_PWR_MGMT1_REG = 0X6B MPU_GYR0_CFG_REG = 0X1B MPU_SAMPLE_RATE_REG=0X19 MPU_CFG_REG=0X1A MPU_USER_CTRL_REG=0X38 MPU_FIF0_EN_REG=0X23 MPU_INTBP_CFG_REG=0X37 MPU_DEVICE_ID_REG=0X75

MPU_ADDR這邊設定裝置位址引腳,有兩種選擇, low為0x68、high為0x69

3-1-2 程式介紹-MPU6050.py⁻

MPU_GYRO_XOUTH_REG=0X43 MPU_GYRO_XOUTL_REG=0X44 MPU_GYRO_YOUTH_REG=0X45 MPU_GYRO_YOUTL_REG=0X46 MPU_GYRO_ZOUTH_REG=0X47 MPU_GYRO_ZOUTL_REG=0X48 MPU_ACCEL_XOUTH_REG=0X38 MPU_ACCEL_YOUTH_REG=0X30 MPU_ACCEL_YOUTH_REG=0X36 MPU_ACCEL_YOUTL_REG=0X37 MPU_ACCEL_ZOUTH_REG=0X40 MPU_TEMP_OUTH_REG=0X41 MPU_TEMP_OUTL_REG=0X42

設定MPU_GYRO、MPU_ACCEL、MPU_TEMP裝置引腳

def read_Gyro_x(self): x = self._read_s16(MPU_GYRO_XOUTH_REG) return x def read_Gyro_y(self): y = self._read_s16(MPU_GYRO_YOUTH_REG) return y def read_Gyro_z(self):

```
z = self._read_s16(MPU_GYRO_ZOUTH_REG)
return z
```

設定X、Y、Z軸的陀螺儀,到時候在main.py若要讀取,以X軸為例,輸入 mpu.read_Gyro_x()即可

3-1-2 程式介紹-MPU6050.py-

```
def read_Accel_x(self):
    x = self._read_s16(MPU_ACCEL_XOUTH_REG)
    return x
def read_Accel_y(self):
    y = self._read_s16(MPU_ACCEL_YOUTH_REG)
    return y
def read_Accel_z(self):
    z = self._read_s16(MPU_ACCEL_ZOUTH_REG)
    return z
```

設定X、Y、Z軸的加速規,到時候在main.py若要讀取,以X軸為例,輸入 mpu.read_Accel_z()即可

🧐 IDEAS Chain 儀表板 🛛 🗙	1DEAS Chain 智慧物聯網系統 - 🗙	👃 影片 - Google 雲端硬碟 🛛 🗙	+		
\leftrightarrow \rightarrow C \bullet iiot.ideaschain.c	om.tw/dashboards/0a04da40-abba	-11ea-8945-157c30c11b66			☆
IDEASChain	■ 儀表板庫 > ■	加速度感應器	論却	亶 應用案例 開發工具	技術支援 🕄
♠ 首頁	加速度感應器		加速度	夏威應器 □□ 加速度威應	醫 🕓 即時-最後
、→ 規則鏈庫					
22 客戶					
事事					
□□ 装置					
計 部件庫	New Timeseries table ① 即時 - 最後 30 分			م	. 0
●● 儀表板庫	Timestamp 🗸	GX	GY	GZ	
稽核日誌	2020-08-03 07:56:34	712	136	786	
	2020-08-03 07:55:37	597	356	486	
	2020-08-03 07:55:15	167	384	726	
	2020-08-03 07:54:56	354	625	928	
			Pa	ge: 1 v 1-4 of 4 🔇	>