DSI2599 類比遊戲搖桿

設計者:陳博揚 指導單位:經濟部工業局 執行單位:資策會數位服務創新研究所

1-1 案例簡介與應用

1-2 所需材料

1-1案例簡介與應用-

本次示範的是類比搖桿,利用MCP3008進行訊號轉換,將類比輸出改為 數位訊號,並使用SPI輸出,可以應用的範圍非常多,可用於操控馬達、舵機, 在許多遊戲機裡,搖桿也是標準的操控配件,一個搖桿可以發出三種訊號, 分別是方向以及按壓的時候。

本次雖然沒有搭配其他輸出,可以自由搭配,做出許多有趣的應用

圖片來源: https://atceiling.blogspot.com/2019/10/arduino74pca9685servo.html

案例應用1:伺服馬達控制

同時需要控制二個軸以上的輸出時,使用類比搖桿會是非常方便的選擇,可以用來控制「轉速」或「角度」,輸出的類比訊號最小值是0,最大值是1023,大家可以根據自己的需求進行設定,甚至可以搭配多個搖 桿和馬達,製作遙控車、機械手臂、機器人

🔺 可根據搖桿動方向不同,引導伺服馬達的轉向(http://drho.club/2018/05/arduino-joy-stick/)

案例應用2:燈號控制

可以根據搖桿方向,控制多色或環狀的LED燈

可根據搖桿方向不同,改變多色LED顏色 (https://chenfuguo.gitbooks.io/arduino/content/Shields/joystick.html)

案例應用3:遊戲手把

根據不同遊戲,可以利用「搖桿」和「按鈕開關」做成遊戲搖桿。

▲可根據搖桿方向不同,改變多色LED顏色(https://youtu.be/nySIKs_emjl)

1-2 所需材料 -

1.DSI2599x1

- 2.類比搖桿 JoyStick x1
- 3.MCP3008 x 1
- 4.10K 電阻 x1
- 5.排線 x 少許

2-1 接線介紹

2-2-1 腳位介紹-SPI

2-3-1 感應器介紹-類比搖桿 2-3-2 感應器介紹-MCP3008

本次由於有許多電源輸出·故搭配麵包版·另外還有一組SPI·對應角位要接對· 否則無法作動

2-1 接線介紹

類比搖桿 GND (Ground) 5V (3.3V) SW (Switch) VRx (X voltage) VRy (Y voltage)

MCP3008 Pin 9 (DGND) Pin 10 (CS) Pin 11 (DIN) Pin 12 (DOUT) Pin 13 (CLK) Pin 14 (AGND) Pin 15 (VREF)

Pin 16 (VDD)

MCP3008 Pi Pin 6 (Ground) Pi Pin 1 (3.3V) MCP3008 Pin 1 (CH0) MCP3008 Pin 2 (CH1) MCP3008 Pin 3 (CH2)

DSI2599

Ground GPIO10 GPIO12 GPIO11 GPIO13 Ground 3.3V 3.3V

MCP3008 PIN01記得加入10K電阻

2-2-1 腳位介紹-SPI

Board	SPI Pin Name	Board Pin Name	CPU Pin Name
NuMaker-PFM-M487 NuMaker-IOT-M487	SPI0_NSS	D10	A3
	SPI0_SCK	D13	A2
	SPI0_MISO	D12	A1
	SPI0_MOSI	D11	A0
	SPI3_NSS	D2	C9
	SPI3_SCK	D3	C10
	SPI3_MISO	A3	B9
	SPI3_MOSI	A2	B8

根據NuvoTon提供的User Manual · 可以得知SPI的Pin位置 · M487提供兩組SPI · 使用的時候需要呼叫函式庫 · 這次示範案例使用的腳位是D10到D13

2-2-1 腳位介紹-SPI

```
1. from pyb import SPI
       2.
       3. # construct an SPI bus on the SPI0
       4. # mode is Master
        5. # polarity is the idle state of SCK
       6. # phase=0 means sample on the first edge of SCK, phase=1 means the second
        7. spi = SPI(0, SPI.MASTER, baudrate=100000, polarity=1, phase=0)
       8.
       9. spi.read(10)
                                 # read 10 bytes on MISO
       10. spi.read(10, 0xff) # read 10 bytes while outputing 0xff on MOSI
        11.
       12. buf = bytearray(50) # create a buffer
                                # read into the given buffer (reads 50 bytes in this case)
        13. spi.readinto(buf)
        14. spi.readinto(buf, 0xff) # read into the given buffer and output 0xff on MOSI
        15.
       16. spi.write(b'12345') # write 5 bytes on MOSI
        17.
        18. buf = bytearray(4) # create a buffer
        19. spi.write_readinto(b'1234', buf) # write 4 bytes to MOSI and read from MISO into the
           buffer
SPI語法介紹,使用以上語法可呼叫SPI功能
```

2-3-1 感應器介紹-類比搖桿-

工作原理:

類比搖桿就是電位器和按鍵的組合感應器。x、y軸就是兩個 可變電阻·為類比輸出·接到兩個模擬接口並讀取電流值;而z軸 就是數位輸出·按壓狀態下會通電。

2-3-2 感應器介紹-MCP3008・

工作原理:

加裝這顆ADC IC · 主要是為了將類比資訊轉為數位資訊 · 不同型號的差異主要在於輸入腳位數及轉換精度(bit)上 · 例如MCP3208為12bit而MCP3008則為10bit · MCP3004 支援4個輸入腳位而MCP3008則為8個

大部份的ADC IC都是使用SPI介面。這是一種高速、全雙工、 同步的資料傳輸技術,最早由摩托羅拉所提出,可以讓 MCU與各種周邊設備以串列方式進行通信與資料交換。

3-1-1程式介紹-MPU6050.py

3-1-1 程式介紹-main.py-

from pyb import SPI
import utime

open SPI bus

SSID = "WIFI名稱" PASS = "WIFI密碼" HOST = "ideaschain.com.tw" API_URL = "iiot.ideaschain.com.tw" DEVICE_KEY = "0DezkympiDB6pgfSzNsY"

這邊設定要載入SPI的函式庫,這樣GPIO才會轉換成I2C,接下來要設定上傳 IDEAS Chain平台的網址跟DEVICE_KEY,平台上稱為存取權杖

3-1-1 程式介紹-main.py-

def wifi():
 try:
 print("connecting to wifi")
 wlan = network.WLAN()
 wlan.connect(SSID, PASS)

 except:
 print("Wifi module initial error, reconnecting.....")
 pyb.delay(1000)
 wifi()

這邊的功能是如果成功連上Wi-Fi,就會顯示" connecting to wifi" 並進行後續的步驟,若是無法連上Wi-Fi,1秒後重新連接,這邊要注意的是,若是無法連接Wi-Fi,就不會進行後續的動作,會一直重複連接Wi-Fi

3-1-1 程式介紹-main.py-

wifi() print("Wi-Fi connect") addr = socket.getaddrinfo(HOST, 80)[0][-1] # 取得連線到伺服器的相關訊息 print(addr) # 顯示取得的address訊息內容 spi = SPI(0, SPI.MASTER, baudrate=100000, polarity=1, phase=0) # bus=0 # read SPI data from MCP3008 , Channel must be 0-7 def ReadChannel(channel): spi.write(bytearray([1,(8+channel)<<4,0])) buf = bytearray(3) spi.readinto(buf) print("Buf:", buf) data = ((buf[1]&3) << 8) + buf[2] return data</pre>

DSI2599有兩組SPI,分別為I2C0與I2C3,這邊使用I2C0,詳細的介紹2-2-1腳位 介紹有提到,接下來進行類比轉數位的處理

3-1-1 程式介紹-main.py-

```
# Define sensor channels
sw_ch = 0
vx_ch = 1
vy_ch = 2
# Define delay between readings
delay = 0.5
while True:
    # Read the joystick position data
    vx_pos = ReadChannel(vx_ch)
    vy_pos = ReadChannel(vy_ch)
```

這邊設定感應器頻道,定義三個讀數之間的延遲,以及操縱杆位置數據

3-1-1 程式介紹-main.py-

Read switch state
sw_val = ReadChannel(sw_ch)

- if int(vx_pos) >= 800:
 print("UP...")
- if int(vx_pos) <= 300:
 print("Down...")</pre>
- if int(vy_pos) <= 300:
 print("Left...")</pre>
- if int(vy_pos) >= 800:
 print("Right...")
- if int(sw_val) >= 1023:
 print("Press...")

程式判斷往左及往下時當數字小於300時·觸發顯示。往右及往上時·當數字大於800時·觸發顯示

*3-1-1*程式介紹-main.py-

將vx_pos、vy_pos、sw_val上傳平台

🥩 IDEAS Chain 儀表板 🛛 🗙	1DEAS Chain 智慧物聯綱系統 -	× +				
\leftrightarrow \rightarrow C \bullet iiot.ideaschain.co	om.tw/dashboards/0a04da40-a	bb2-11ea-8945-157c30c11	1b66			* 🖻 🖡
IDEASChain	🚼 儀表板庫 🔹	╉ 加速度感應器		論壇	· 應用案例 開發工	具技術支援 🔛 😫
↑ 首頁	加速度感應器			加速度	◎ 加速月	實感應器 🕓 即時-最後12小
、→ 規則鏈庫						
22 客戶						
■ 專案						
[₀□ 裝置	New Timeseries table					Q []
■● 部件庫	① 即時 - 最後 12 小時					
●	Timestamp 🗸		×	Y	Z	
	2020-08-03 06:23:39		0	0	1	
	2020-08-03 06:23:25		211	162	0	
	2020-08-03 06:23:11		361	82	0	
	2020-08-03 06:22:26		248	436	0	